Kořeny algebraických rovnic

V následující části uvedeme stručně metody určené pro hledání komplexních a reálných kořenů rovnice, na jejíž levé straně se vyskytuje polynom stupně n tehdy, když  a n 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaabccacaqG0bGaaeyzaiaabIgacaqGKbGaaeyEaiaabYcacaqGGaGaae4AaiaabsgacaqG5bGaaeOFbiaabccacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyiyIKRaaGimaaaa@46A8@

a n x n + a n1 x n1 ++ a 1 x + a 0 =0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaadIhadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaey4kaSIaeS47IWKaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadIhadaahaaWcbeqaaaaakiabgUcaRiaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIWaaaaa@4DE0@

(1)

Zaměříme se na nejdůležitější případ, kdy koeficienty a n , a n1 ,, a 1 , a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiaacYcacaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaacYcacqWIVlctcaGGSaGaamyyamaaBaaaleaacaaIXaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaaicdaaeqaaaaa@4424@  jsou reálná čísla a x MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@370B@  je komplexní proměnná.

Jak známo, polynomem stupně nula je každá nenulová konstanta, polynomem jedna pak známá lineární funkce P(x)= a 1 x + a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacIcacaWG4bGaaiykaiabg2da9iaadggadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaWbaaSqabeaaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaaaa@3FF7@  a polynomem druhého stupně kvadratická funkce P(x)= a 2 x 2 + a 1 x+ a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacIcacaWG4bGaaiykaiabg2da9iaadggadaWgaaWcbaGaaGOmaaqabaGccaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaaaa@446A@

Základní věta algebry uvádí, že rovnice (1)n kořenů α 1 , α 2 ,..., α n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaiilaiaaykW7cqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaGPaVlaac6cacaGGUaGaaiOlaiaacYcacqaHXoqydaWgaaWcbaGaamOBaaqabaaaaa@4528@ . (každý kořen přitom počítáme tolikrát, kolik činí jeho násobnost). Polynom lze pak přepsat do tvaru

P(x)= a n (x α n )(x α n1 )(x α 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacIcacaWG4bGaaiykaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccaGGOaGaamiEaiabgkHiTiabeg7aHnaaBaaaleaacaWGUbaabeaakiaacMcacaGGOaGaamiEaiabgkHiTiabeg7aHnaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGPaGaeS47IWKaaiikaiaadIhacqGHsislcqaHXoqydaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@51CC@

(2)

Kořeny rovnice (1) jsou kořeny polynomu (2). Někdy se používá též název nulové body polynomu. Jsou to tedy čísla α n , α n1 ,, α 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaad6gaaeqaaOGaaiilaiabeg7aHnaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGSaGaeSOjGSKaaiilaiabeg7aHnaaBaaaleaacaaIXaaabeaaaaa@42FD@ .

(x α n ),(x α n1 ),,(x α 1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacqGHsislcqaHXoqydaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiilaiaacIcacaWG4bGaeyOeI0IaeqySde2aaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaacMcacaGGSaGaeS47IWKaaiilaiaacIcacaWG4bGaeyOeI0IaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@4D9C@  jsou tzv. kořenoví činitelé

Připomeňme, že kořen α MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@378C@  nazýváme r-násobný tehdy a jen tehdy, když f (r) (α)0 f (j) (α)=0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadkhacaGGPaaaaOGaaiikaiabeg7aHjaacMcacqGHGjsUcaaIWaGaey4jIKTaamOzamaaCaaaleqabaGaaiikaiaadQgacaGGPaaaaOGaaiikaiabeg7aHjaacMcacqGH9aqpcaaIWaaaaa@48A8@  pro j=r1,,2,1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2da9iaadkhacqGHsislcaaIXaGaaiilaiablAciljaacYcacaaIYaGaaiilaiaaigdaaaa@3F2B@ , přičemž f (j) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCaaaleqabaGaaiikaiaadQgacaGGPaaaaaaa@394D@  značí j–tou derivaci funkce f MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36D8@

Rovnice x 3  + x 2  - 5x + 3 = 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiEamaaCaaaleqabaGaae4maaaakiaabccacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabkdaaaGccaqGGaGaaeylaiaabccacaqG1aGaaeiEaiaabccacaqGRaGaaeiiaiaabodacaqGGaGaaeypaiaabccacaqGWaaaaa@44BC@  má kořen α 2 =3 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaG4maaaa@3B2E@  kořen α 1 =1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGymaaaa@3A3E@  dvojnásobný neboť f (1)=f(1)=0 f (1)=80 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafaGaaiikaiaaigdacaGGPaGaeyypa0JaamOzaiaacIcacaaIXaGaaiykaiabg2da9iaaicdacqGHNis2ceWGMbGbayaacaGGOaGaaGymaiaacMcacqGH9aqpcaaI4aGaeyiyIKRaaGimaaaa@47C0@

Pokud jsou koeficienty a n , a n1 ,, a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiaacYcacaaMc8UaamyyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGSaGaaGPaVlabl+UimjaacYcacaWGHbWaaSbaaSqaaiaaicdaaeqaaaaa@44B3@  reálné, pak se případné komplexní kořeny vyskytují v komplexně sdružených dvojicích.

Všechny kořeny algebraické rovnice jsou rozloženy v mezikruží

r<| z |<R MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgYda8maaemaabaGaamOEaaGaay5bSlaawIa7aiabgYda8iaadkfaaaa@3E04@ ,

kde

r= | a 0 | a k +| a 0 | MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9maalaaabaWaaqWaaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaGccaGLhWUaayjcSdaabaGaamyyamaaBaaaleaacaWGRbaabeaakiabgUcaRmaaemaabaGaamyyamaaBaaaleaacaaIWaaabeaaaOGaay5bSlaawIa7aaaaaaa@44F8@

R=1+ a i | a n | MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2da9iaaigdacqGHRaWkdaWcaaqaaiaadggadaWgaaWcbaGaamyAaaqabaaakeaadaabdaqaaiaadggadaWgaaWcbaGaamOBaaqabaaakiaawEa7caGLiWoaaaaaaa@40D2@

(3)

a k  je maximální z čísel | a n |,| a n1 |,,| a 1 |} MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGRbaabeaakiaabccacaqGQbGaaeyzaiaabccacaqGTbGaaeyyaiaabIhacaqGPbGaaeyBaiaabgoacaqGSbGaaeOBaiaab2oacaqGGaGaaeOEaiaabccacaqGneGaaey7aiaabohacaqGLbGaaeiBaiaabccadaabdaqaaiaadggadaWgaaWcbaGaamOBaaqabaaakiaawEa7caGLiWoacaaMc8UaaiilaiaaykW7daabdaqaaiaadggadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGLhWUaayjcSdGaaGPaVlaacYcacqWIVlctcaaMc8UaaiilamaaemaabaGaamyyamaaBaaaleaacaaIXaaabeaaaOGaay5bSlaawIa7aiaaykW7caGG9baaaa@6A00@ , a i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaaa@380D@  je maximální z čísel | a n1 |,,| a 0 | MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGPaVpaaemaabaGaamyyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaakiaawEa7caGLiWoacaaMc8Uaaiilaiabl+UimjaaykW7caGGSaWaaqWaaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaGccaGLhWUaayjcSdGaaGPaVdaa@4B58@

Polynom s reálnými koeficienty nemusí mít žádný reálný nulový bod.

Odhady polohy kořenů algebraických rovnic.

Pro řešení výše uvedené rovnice je vhodné mít představu o počtu a poloze kořenů algebraické rovnice, které leží v daném intervalu. Následující text je věnován poloze reálných kořenů.

Pozn.: K řešení uvedené úlohy lze použít již dříve uváděné metody řešení nelineárních rovnic.

Předpokládáme, že algebraická rovnice

a n x n + a n1 x n1 +...+ a 1 x + a 0 =0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaadIhadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadIhadaahaaWcbeqaaaaakiabgUcaRiaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIWaaaaa@4E08@  ; a n >0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiabg6da+iaaicdaaaa@39DE@

(4)

má pouze jednoduché kořeny.

Při separaci reálných kořenů uvedené rovnice lze užít tzv. Sturmovu posloupnost:

P(x), P 1 (x), P 2 (x),, P m (x) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacIcacaWG4bGaaiykaiaacYcacaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhacaGGPaGaaiilaiaadcfadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiEaiaacMcacaGGSaGaeS47IWKaaiilaiaadcfadaWgaaWcbaGaamyBaaqabaGccaGGOaGaamiEaiaacMcaaaa@4A72@  Získáme ji tak, že položíme P 1 (x)= P (x) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9iqadcfagaqbamaaBaaaleaaaeqaaOGaaiikaiaadIhacaGGPaaaaa@3E9C@ , dále označíme P 2 (x) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIYaaabeaakiaacIcacaWG4bGaaiykaaaa@3A2A@  jako zbytek při dělení P (x) P 1 (x) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGqbWaaSbaaSqaaaqabaGccaGGOaGaamiEaiaacMcaaeaacaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhacaGGPaaaaaaa@3D9A@  násobený číslem 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGymaaaa@37B5@ ; P 3 (x) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaaIZaaabeaakiaacIcacaWG4bGaaiykaaaa@3A2B@  je pak zbytek při dělení P 1 (x) P 2 (x) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGqbWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhacaGGPaaabaGaamiuamaaBaaaleaacaaIYaaabeaakiaacIcacaWG4bGaaiykaaaaaaa@3E56@  násobený číslem 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaGymaaaa@37B5@ , atd. Proces tvorby dalších členů ukončujeme v případě, že získáme konstantu.

Počet reálných kořenů rovnice a n x n + a n1 x n1 +...+ a 1 x + a 0 =0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaadIhadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadIhadaahaaWcbeqaaaaakiabgUcaRiaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIWaaaaa@4E08@  na intervalu <a,b> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyipaWJaamyyaiaacYcacaWGIbGaeyOpa4daaa@3A96@  je roven rozdílu mezi počtem znaménkových změn ve Sturmově posloupnosti pro x=a MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadggaaaa@38F6@  a x=b MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadkgaaaa@38F7@  ; ( P (a) P (b)0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaaaeqaaOGaaiikaiaadggacaGGPaGaeyyXICTaamiuamaaBaaaleaaaeqaaOGaaiikaiaadkgacaGGPaGaeyiyIK7enfgDOvwBHrxAJfwmaeHbnfgDOvwBHrxAJfwmaGqbaiab=bdaWaaa@4AED@ , tedy a MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36D4@  resp. b MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36D5@  nejsou kořeny mnohočlenu P).

Nechť v rovnici a n x n + a n1 x n1 +...+ a 1 x + a 0 =0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaadIhadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadIhadaahaaWcbeqaaaaakiabgUcaRiaadggadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIWaaaaa@4E08@  je a n >0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaat0uy0HwzTfgDPnwyXaqeg0uy0HwzTfgDPnwyXaacfaGccqWF+aGpcaaIWaaaaa@432C@

Pozn.: Pokud tomu tak není, lze toho jak známo, jednoduše dosáhnout násobením obou stran rovnice číslem -1

Pro každý reálný kořen α MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@378D@  rovnice (4) platí (srovnejte se vztahem (3)):

a)     α<1+ | ai | an MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyipaWJaaGymaiabgUcaRmaalaaabaWaaqWaaeaacaWGHbWccaWGPbaakiaawEa7caGLiWoaaeaacaWGHbWccaWGUbaaaaaa@412C@  (Maclaurinův odhad), kde
| ai | MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGHbWccaWGPbaakiaawEa7caGLiWoaaaa@3AF8@  je nejmenší záporný (tj. v absolutní hodnotě největší) koeficient v (1); pokud žádný záporný koeficient neexistuje, je α0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyizImQaaGimaaaa@39FC@

b)     α<1+ | ai | an r MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyipaWJaaGymaiabgUcaRmaakeaabaWaaSaaaeaadaabdaqaaiaadggaliaadMgaaOGaay5bSlaawIa7aaqaaiaadggaliaad6gaaaaabaGaamOCaaaaaaa@4233@  (Lagrangeův odhad), kde | ai | MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGHbWccaWGPbaakiaawEa7caGLiWoaaaa@3AF8@  je opět nejmenší záporný (tj. v absolutní hodnotě největší) koeficient a
r=ni MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2da9iaad6gacqGHsislcaWGPbaaaa@3AD8@ ; i MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36DC@  je index prvního záporného koeficientu v (1)

c)      α<1+ | ai | as n(rs) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyipaWJaaGymaiabgUcaRmaakeaabaWaaSaaaeaadaabdaqaaiaadggaliaadMgaaOGaay5bSlaawIa7aaqaaiaadggaliaadohaaaaabaGaamOBaiabgkHiTiaacIcacaWGYbGaeyOeI0Iaam4CaiaacMcaaaaaaa@4756@  (Tillotův odhad), kde
a i MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGPbaabeaaaaa@37EE@  a r MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36E5@  ar jsou stejné jako v a) a b) a a s MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGZbaabeaaaaa@37F8@  je největší z  n-i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaac2cacaWGPbaaaa@387F@  kladných koeficientů

1.      Při řešení algebraické rovnice znalost jednoho kořene umožňuje snížit stupeň polynomu na levé straně uvažované rovnice.

 

Algebraická rovnice u níž malé změny koeficientů způsobují velké změny kořenů, se nazývá špatně podmíněná. Např. pokud v rovnici:

(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10) (x-11)(x-12)(x-13)(x-14)(x-15)(x-16)(x-17)(x-18)(x-19)(x-20)= MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaGGOaGaamiEaiaac2cacaaIXaGaaiykaiaacIcacaWG4bGaaiylaiaaikdacaGGPaGaaiikaiaadIhacaGGTaGaaG4maiaacMcacaGGOaGaamiEaiaac2cacaaI0aGaaiykaiaacIcacaWG4bGaaiylaiaaiwdacaGGPaGaaiikaiaadIhacaGGTaGaaGOnaiaacMcacaGGOaGaamiEaiaac2cacaaI3aGaaiykaiaacIcacaWG4bGaaiylaiaaiIdacaGGPaGaaiikaiaadIhacaGGTaGaaGyoaiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaGimaiaacMcaaeaacaGGOaGaamiEaiaac2cacaaIXaGaaGymaiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaGOmaiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaG4maiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaGinaiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaGynaiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaGOnaiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaG4naiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaGioaiaacMcacaGGOaGaamiEaiaac2cacaaIXaGaaGyoaiaacMcacaGGOaGaamiEaiaac2cacaaIYaGaaGimaiaacMcacqGH9aqpaeaaaaaa@8A73@

2432902008176640000 - 8752948036761600000 x +  13803759753640704000  x 2  - 12870931245150988800  x 3  +  8037811822645051776  x 4  - 3599979517947607200  x 5  +  1206647803780373360  x 6  - 311333643161390640  x 7  +  63030812099294896  x 8  - 10142299865511450  x 9  +  1307535010540395  x 10  - 135585182899530  x 11  +  11310276995381  x 12  - 756111184500  x 13  + 40171771630  x 14  -  1672280820  x 15  + 53327946  x 16  - 1256850  x 17  + 20615  x 18  -  210  x 19  +  x 20 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIYaGaaGinaiaaiodacaaIYaGaaGyoaiaaicdacaaIYaGaaGimaiaaicdacaaI4aGaaGymaiaaiEdacaaI2aGaaGOnaiaaisdacaaIWaGaaGimaiaaicdacaaIWaGaaeiiaiaac2cacaqGGaGaaGioaiaaiEdacaaI1aGaaGOmaiaaiMdacaaI0aGaaGioaiaaicdacaaIZaGaaGOnaiaaiEdacaaI2aGaaGymaiaaiAdacaaIWaGaaGimaiaaicdacaaIWaGaaGimaiaabccacaWG4bGaaeiiaiabgUcaRiaabccaaeaacaaIXaGaaG4maiaaiIdacaaIWaGaaG4maiaaiEdacaaI1aGaaGyoaiaaiEdacaaI1aGaaG4maiaaiAdacaaI0aGaaGimaiaaiEdacaaIWaGaaGinaiaaicdacaaIWaGaaGimaiaabccacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaeiiaiaac2cacaqGGaGaaGymaiaaikdacaaI4aGaaG4naiaaicdacaaI5aGaaG4maiaaigdacaaIYaGaaGinaiaaiwdacaaIXaGaaGynaiaaicdacaaI5aGaaGioaiaaiIdacaaI4aGaaGimaiaaicdacaqGGaGaamiEamaaCaaaleqabaGaaG4maaaakiaabccacqGHRaWkcaqGGaaabaGaaGioaiaaicdacaaIZaGaaG4naiaaiIdacaaIXaGaaGymaiaaiIdacaaIYaGaaGOmaiaaiAdacaaI0aGaaGynaiaaicdacaaI1aGaaGymaiaaiEdacaaI3aGaaGOnaiaabccacaWG4bWaaWbaaSqabeaacaaI0aaaaOGaaeiiaiaac2cacaqGGaGaaG4maiaaiwdacaaI5aGaaGyoaiaaiMdacaaI3aGaaGyoaiaaiwdacaaIXaGaaG4naiaaiMdacaaI0aGaaG4naiaaiAdacaaIWaGaaG4naiaaikdacaaIWaGaaGimaiaabccacaWG4bWaaWbaaSqabeaacaaI1aaaaOGaaeiiaiabgUcaRiaabccaaeaacaaIXaGaaGOmaiaaicdacaaI2aGaaGOnaiaaisdacaaI3aGaaGioaiaaicdacaaIZaGaaG4naiaaiIdacaaIWaGaaG4maiaaiEdacaaIZaGaaG4maiaaiAdacaaIWaGaaeiiaiaadIhadaahaaWcbeqaaiaaiAdaaaGccaqGGaGaaiylaiaabccacaaIZaGaaGymaiaaigdacaaIZaGaaG4maiaaiodacaaI2aGaaGinaiaaiodacaaIXaGaaGOnaiaaigdacaaIZaGaaGyoaiaaicdacaaI2aGaaGinaiaaicdacaqGGaGaamiEamaaCaaaleqabaGaaG4naaaakiaabccacqGHRaWkcaqGGaaabaGaaGOnaiaaiodacaaIWaGaaG4maiaaicdacaaI4aGaaGymaiaaikdacaaIWaGaaGyoaiaaiMdacaaIYaGaaGyoaiaaisdacaaI4aGaaGyoaiaaiAdacaqGGaGaamiEamaaCaaaleqabaGaaGioaaaakiaabccacaGGTaGaaeiiaiaaigdacaaIWaGaaGymaiaaisdacaaIYaGaaGOmaiaaiMdacaaI5aGaaGioaiaaiAdacaaI1aGaaGynaiaaigdacaaIXaGaaGinaiaaiwdacaaIWaGaaeiiaiaadIhadaahaaWcbeqaaiaaiMdaaaGccaqGGaGaey4kaSIaaeiiaaqaaiaaigdacaaIZaGaaGimaiaaiEdacaaI1aGaaG4maiaaiwdacaaIWaGaaGymaiaaicdacaaI1aGaaGinaiaaicdacaaIZaGaaGyoaiaaiwdacaqGGaGaamiEamaaCaaaleqabaGaaGymaiaaicdaaaGccaqGGaGaaiylaiaabccacaaIXaGaaG4maiaaiwdacaaI1aGaaGioaiaaiwdacaaIXaGaaGioaiaaikdacaaI4aGaaGyoaiaaiMdacaaI1aGaaG4maiaaicdacaqGGaGaamiEamaaCaaaleqabaGaaGymaiaaigdaaaGccaqGGaGaey4kaSIaaeiiaaqaaiaaigdacaaIXaGaaG4maiaaigdacaaIWaGaaGOmaiaaiEdacaaI2aGaaGyoaiaaiMdacaaI1aGaaG4maiaaiIdacaaIXaGaaeiiaiaadIhadaahaaWcbeqaaiaaigdacaaIYaaaaOGaaeiiaiaac2cacaqGGaGaaG4naiaaiwdacaaI2aGaaGymaiaaigdacaaIXaGaaGymaiaaiIdacaaI0aGaaGynaiaaicdacaaIWaGaaeiiaiaadIhadaahaaWcbeqaaiaaigdacaaIZaaaaOGaaeiiaiabgUcaRiaabccacaaI0aGaaGimaiaaigdacaaI3aGaaGymaiaaiEdacaaI3aGaaGymaiaaiAdacaaIZaGaaGimaiaabccacaWG4bWaaWbaaSqabeaacaaIXaGaaGinaaaakiaabccacaGGTaGaaeiiaaqaaiaaigdacaaI2aGaaG4naiaaikdacaaIYaGaaGioaiaaicdacaaI4aGaaGOmaiaaicdacaqGGaGaamiEamaaCaaaleqabaGaaGymaiaaiwdaaaGccaqGGaGaey4kaSIaaeiiaiaaiwdacaaIZaGaaG4maiaaikdacaaI3aGaaGyoaiaaisdacaaI2aGaaeiiaiaadIhadaahaaWcbeqaaiaaigdacaaI2aaaaOGaaeiiaiaac2cacaqGGaGaaGymaiaaikdacaaI1aGaaGOnaiaaiIdacaaI1aGaaGimaiaabccacaWG4bWaaWbaaSqabeaacaaIXaGaaG4naaaakiaabccacqGHRaWkcaqGGaGaaGOmaiaaicdacaaI2aGaaGymaiaaiwdacaqGGaGaamiEamaaCaaaleqabaGaaGymaiaaiIdaaaGccaqGGaGaaiylaiaabccaaeaacaaIYaGaaGymaiaaicdacaqGGaGaamiEamaaCaaaleqabaGaaGymaiaaiMdaaaGccaqGGaGaey4kaSIaaeiiaiaadIhadaahaaWcbeqaaiaaikdacaaIWaaaaOGaaiykaaaaaa@6F93@

změníme-li koeficient a 19 =210 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGyoaaqabaGccqGH9aqpcqGHsislcaaIYaGaaGymaiaaicdaaaa@3CAC@  na a 19 =(210+ 2 23 ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGyoaaqabaGccqGH9aqpcqGHsislcaGGOaGaaGOmaiaaigdacaaIWaGaey4kaSIaaGOmamaaCaaaleqabaGaeyOeI0IaaGOmaiaaiodaaaGccaGGPaaaaa@4240@

získáme

místo kořenů

hodnoty

14 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaisdaaaa@3766@  a 15 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiwdaaaa@3767@

13,9923+2,51881 i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiodacaGGSaGaaGyoaiaaiMdacaaIYaGaaG4maiabgUcaRiaaikdacaGGSaGaaGynaiaaigdacaaI4aGaaGioaiaaigdacaqGGaGaamyAaaaa@42AC@  a 13,99232,51881 i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiodacaGGSaGaaGyoaiaaiMdacaaIYaGaaG4maiabgkHiTiaaikdacaGGSaGaaGynaiaaigdacaaI4aGaaGioaiaaigdacaqGGaGaamyAaaaa@42B7@

Příklad 1.

Pro reálné kořeny rovnice x3+4x2+x-6=0 získáme odhady:

(n=3;i=0,a0=-6;r=n-0=3,s=2)

a)     a<1+ |6| 1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaGG8bGaeyOeI0IaaGOnaiaacYhaaeaacaaIXaaaaaaa@3A85@ =7

b)     a<1+ | 6 | 1 3   MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaadaWcaaqaamaaemaabaGaeyOeI0IaaGOnaaGaay5bSlaawIa7aaqaaiaaigdaaaaaleaacaqGZaaaaOGaaeiiaaaa@3D25@  »2,8171

c)      a<1+ | 6 | 4 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaadaWcaaqaamaaemaabaGaeyOeI0IaaGOnaaGaay5bSlaawIa7aaqaaiaaisdaaaaaleqaaaaa@3BA6@  »2,2247

Descartova věta: Počet kladných kořenů rovnice (4) je buď roven počtu znaménkových změn v posloupnosti a n , a n1 , a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGUbaabeaakiaacYcacaaMc8UaamyyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGSaGaaGPaVlabl+UimjaaykW7caWGHbWaaSbaaSqaaiaaicdaaeqaaaaa@458E@  jeho koeficientů nebo je o sudý počet menší.

Příklad 2.

K rovnici: x 4 +3 x 2 -1=0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiodacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaaeylaiaaigdacqGH9aqpcaaIWaaaaa@3EB9@  sestrojíme příslušnou posloupnost 1,0,3,0,-1,
kde se vyskytuje jedna znaménková změna a rovnice má právě jeden kladný kořen. Odhady činí:

a)     a<2

b)     a<2

c)      a<1+ | 1 | 3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaadaWcaaqaamaaemaabaGaeyOeI0IaaGymaaGaay5bSlaawIa7aaqaaiaaiodaaaaaleqaaaaa@3BA0@  »1,577

Reálné kořeny jsou: -0,550251 a 0,550251 viz následující obrázek:

Hodnota kladného kořene, který nás zajímal, je 0,550251

Newtonova metoda pro polynomy (Newton-Hornerova metoda, někdy nazývaná Birge-Veitova metoda)

Velmi často je tato metoda nazývána Newton–Hornerova (na rozdíl od Newton–Raphsonovy metody pro určení kořenů nelineárních transcendentních rovnic). Metoda využívá dělení derivací dané funkce (polynomu).

x j+1 = x j P( x j ) P ( x j ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGQbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0YaaSaaaeaacaWGqbGaaiikaiaadIhadaWgaaWcbaGaamOAaaqabaGccaGGPaaabaGabmiuayaafaGaaiikaiaadIhadaWgaaWcbaGaamOAaaqabaGccaGGPaaaaaaa@467E@ , kde P( x j ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacIcacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaaiykaaaa@3A3D@  je funkční hodnota mnohočlenu a P ( x j ) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaafaGaaiikaiaadIhadaWgaaWcbaGaamOAaaqabaGccaGGPaaaaa@3A4A@  je hodnota jeho derivace.

Hodnoty polynomu a hodnoty první derivace se efektivně počítají pomocí známého Hornerova schématu. Základem algoritmu Newtonovy metody pro polynomy je tedy opakované užití uvedeného Hornerova algoritmu.

Polynom P n (x)= a n x n + a n1 x n1 +...+ a 1 x + a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaacIcacaWG4bGaaiykaiabg2da9iaadggadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbaaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgUcaRiaac6cacaGGUaGaaiOlaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccaWG4bWaaWbaaSqabeaaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaaaa@5198@  upravíme do tvaru

P n (x)= ((( n1 a n x+ a n1 )x+ a n2 )x+...+ a 2 )x+ a 1 )x+ a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maayaaabaGaaiikaiaacIcacqWIMaYscaGGOaaaleaacaWGUbGaeyOeI0IaaGymaaGccaGL44pacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamiEaiabgUcaRiaadggadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaiykaiaadIhacqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIYaaabeaakiaacMcacaWG4bGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaacMcacaWG4bGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaacMcacaWG4bGaey4kaSIaamyyamaaBaaaleaacaaIWaaabeaaaaa@6128@

Někdy je výhodnější přepsat rovnici do tvaru

a 0 x n + a 1 x n1 +...+ a n1 x+ a n =0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaaIWaaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamiEamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccqGHRaWkcaGGUaGaaiOlaiaac6cacqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaadIhacqGHRaWkcaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0JaaGimaaaa@4DD1@

Polynom upravíme pak takto:

P n (x)= ((( n1 a 0 x+ a 1 )x+ a 2 )x+...+ a n2 )x+ a n1 )x+ a n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maayaaabaGaaiikaiaacIcacqWIMaYscaGGOaaaleaacaWGUbGaeyOeI0IaaGymaaGccaGL44pacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaamiEaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccaGGPaGaamiEaiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaamiEaiabgUcaRiaac6cacaGGUaGaaiOlaiabgUcaRiaadggadaWgaaWcbaGaamOBaiabgkHiTiaaikdaaeqaaOGaaiykaiaadIhacqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaacMcacaWG4bGaey4kaSIaamyyamaaBaaaleaacaWGUbaabeaaaaa@6128@

 

Algoritmus výpočtu P n (α) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaacIcacqaHXoqycaGGPaaaaa@3B03@ , kde α MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@37AC@  je dané číslo, je založen na postupném vypočítávání členů v jednotlivých závorkách. Místo hodnot α MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@37AC@  dosazujeme jednotlivé hodnoty x j MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGQbaabeaaaaa@3806@ .

Rekurentní vzorec je v tomto případě:

b i =α b i1 + a i MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaWGPbaabeaakiabg2da9iabeg7aHjaadkgadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWGPbaabeaaaaa@4133@  pro i=1,2,,n MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacqWIMaYscaGGSaGaamOBaaaa@3D7E@ ; b 0 = a 0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBaaaleaacaaIWaaabeaakiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaaaaa@3A96@

Výsledek:

P n (α)= b n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaacIcacqaHXoqycaGGPaGaeyypa0JaamOyamaaBaaaleaacaWGUbaabeaaaaa@3E0F@

Příklad 3.

Reálné kořeny jsou:

ξ 1 =8 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGioaaaa@3B57@ , ξ 2 =1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGymaaaa@3A64@ , ξ 3 =3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaG4maaaa@3A67@ , ξ 4 =5 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaisdaaeqaaOGaeyypa0JaaGynaaaa@3A6A@

Program ve Visual Basicu pro Excel:

 

Sub Newton_Horner()

   

    y_p = 10

    y_p_2 = 13

    x_p = 0

    pocet = Cells(5, 5)

    odhad = Cells(1, 1)

    x = odhad

For k = 1 To 100

    i = 1

    bi = Cells(y_p, x_p + i)

    Cells(y_p + 3, x_p + i) = bi

 For i = 1 To pocet

     bi = bi * x + Cells(y_p, x_p + i + 1)

     Cells(y_p + 3, x_p + i + 1) = bi

 Next i

     Cells(6, 5) = bi

     i = 1

     bi = Cells(y_p_2, x_p + i)

     Cells(y_p + 4, x_p + i) = bi

 For i = 1 To pocet - 1

     bi = bi * x + Cells(y_p_2, x_p + i + 1)

     Cells(y_p + 4, x_p + i + 1) = bi

 Next i

  Cells(6, 7) = bi

 

 odhad = odhad - (Cells(y_p_2, 7) / Cells(y_p_2 + 1, 6))

 Cells(1, 3) = Abs(x - odhad)

 x = odhad

 Cells(1, 1) = x

 Cells(1, 2) = k

If Cells(1, 3) < 0.0000000001 Then

Exit For

GoTo Konec

End If

Next k

Konec:

End Sub

Obrázek ilustruje stav výpočtu po určení kořene ξ 4 =5 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaisdaaeqaaOGaeyypa0JaaGynaaaa@3A6A@

Snížíme-li požadovanou přesnost:

If Cells(1, 3) < 0.000001 Then

Exit For

Je počet iterací o jednu menší

Všimněte si následujícího grafu. Při volbě počátečním odhadu 0 bude určen kořen ξ 3 =3 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaG4maaaa@3A67@

Z obrázku je vidět, že mnohdy velmi záleží na počáteční aproximaci kořene. Když počáteční aproximace neleží v dostatečné blízkosti kořene, metoda nemusí konvergovat nebo je určen jiný kořen.

Hledáme-li všechny kořeny rovnice (4), postupujeme zpravidla tak, že stanovíme její reálný kořen ξ 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaaa@3898@  a vydělením levé strany rovnice (4), tj. mnohočlenu P n (x) MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbaabeaakiaacIcacaWG4bGaaiykaaaa@3A42@  lineárním činitelem x ξ 1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgkHiTiabe67a4naaBaaaleaacaaIXaaabeaaaaa@3A82@  obdržíme rovnici P n1 (x)=0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaaaaa@3DAA@  stupně n1 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgkHiTiaaigdaaaa@3889@ . Postup opakujeme s rovnicí P n1 (x)=0 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcaaIWaaaaa@3DAA@ . Získáme kořen ξ 2 MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaaa@3899@ . Pokračujeme do té doby, až dospějeme k rovnici, která nemá reálné kořeny. Je-li to rovnice druhého stupně, použijeme známý vzorec pro získání komplexních kořenů.

Existují ještě další specializované metody pro hledání komplexních a reálných kořenů rovnice, na jejíž levé straně se vyskytuje polynom stupně n  MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaabccaaaa@37A3@ , jako metoda sečen pro polynomy, Laguerrova metoda, Lehmerova-Schurova metoda či Grafeova metoda resp. Mullerova metoda. Popis těchto metod přesahuje rámec tohoto modulu.